Paci posiu WEST P CIENCE ma le Chain Ecolo **Nutrition**

Evaluating the impact of climate change on potential distribution of Japanese anchovy (*Engraulis japonicus*) using species distribution model

Shuhao Liu, Yang Liu*

Laboratory of Fisheries Oceanography College of Fisheries, Ocean University of China Qingdao, China Ishuhao666@gmail.com

Deviance	explained	of three	algorithm

Model	Predictor variable	AIC	p-value	Deviance explained
GAM	SSS Depth Lg(chlorophyll-a) SST U	217.53	7.7 × 10 ⁻¹⁴ ** 0.000197 ** 0.006866 ** 0.000302 ** 0.000800 **	36.7%
GLM	SSS Chlorophyll-a V	303.84	1.5 × 10 ⁻⁷ ** 0.008404 ** 0.000247 **	9.30%
RF	SSS Depth Chlorophyll-a SST U V			32.5%
** <i>p</i> < 0.01.				

Predicted CPUE versus Actual CPUE in 2015

The GAM has best predictive performance

The importance of predictor variable based GAM

Predictor variable	AIC	p-value	Deviance explained	
SSS	276.77	1.94 × 10 ⁻¹⁴ **	15.90%	The SSS is most import
Depth	314.08	7.57 × 10 ⁻⁶ **	9.03%	
Lg(chlorophyll-a)	321.98	0.00023 **	7.35%	
SST	325.63	0.00152 **	5.36%	
U	329.54	0.00867 **	4.94%	
**n < 0.01				

The **salinity front** (contours) was detected as the **main sea surface feature** associated with wintering ground of Japanese anchovy

Predicted Japanese anchovy CPUE (ton h⁻¹) overlaid with actual fishing CPUE (black dots) in winter

Wintering Japanese anchovy **northward habitat shift, relative abundance** would **increase** at end of the century.

Summary

1. The generalized additive models (**GAM**) perform well in predicting potential distribution of wintering Japanese anchovy.

2. The abundance of Japanese anchovy was significantly influenced by **SST**, **SSS**, **feeding opportunity**, and **ocean currents**.

3. The **salinity front** was detected as the **main sea surface feature** associated with wintering ground of Japanese anchovy.

4. The impact of **ENSO** on the Japanese anchovy distribution is captured through its influence on the **SST** on the wintering fishing ground.

5. The rising temperatures will result in the wintering Japanese anchovy **northward habitat shift** and the **increasing relative abundance** by the end of the century.

More details: Liu S, Liu Y, Alabia ID, Tian Y, Ye Z, Yu H, Li J and Cheng J (2020) Impact of Climate Change on Wintering Ground of Japanese Anchovy (*Engraulis japonicus*) Using Marine Geospatial Statistics. **Frontier in Marine Science**. 7, 604. https://doi.org/10.3389/fmars.2020.00604.

Ocean University of China Qingdao, China <u>Ishuhao666@gmail.com</u>

